Author Topic: Mars Rover Curiosity  (Read 75674 times)

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #180 on: May 12, 2016, 07:22:02 AM »
Quote
05.11.2016
Second Cycle of Martian Seasons Completing for Curiosity Rover

NASA's Curiosity Mars rover today completes its second Martian year since landing inside Gale Crater nearly four Earth years ago, which means it has recorded environmental patterns through two full cycles of Martian seasons.
The repetition helps distinguish seasonal effects from sporadic events. For example, a large spike in methane in the local atmosphere during the first southern-hemisphere autumn in Gale Crater was not repeated the second autumn. It was an episodic release, still unexplained. However, the rover's measurements do suggest that much subtler changes in the background methane concentration -- amounts much less than during the spike -- may follow a seasonal pattern. Measurements of temperature, pressure, ultraviolet light reaching the surface and the scant water vapor in the air at Gale Crater show strong, repeated seasonal changes.

Monitoring the modern atmosphere, weather and climate fulfills a Curiosity mission goal supplementing the better-known investigations of conditions billions of years ago. Back then, Gale Crater had lakes and groundwater that could have been good habitats for microbes, if Mars has ever had any. Today, though dry and much less hospitable, environmental factors are still dynamic.

Curiosity's Rover Environmental Monitoring Station (REMS), supplied by Spain's Centro de Astrobiología, has measured air temperatures from 60.5 degrees Fahrenheit (15.9 degrees Celsius) on a summer afternoon, to minus 148 F (minus 100 C) on a winter night. Seasonal patterns in temperature, water vapor and pressure that Curiosity has measured in Gale Crater are charted in a new graphic at:

http://mars.nasa.gov/multimedia/images/?ImageID=7818

"Curiosity's weather station has made measurements nearly every hour of every day, more than 34 million so far," said Curiosity Project Scientist Ashwin Vasavada of NASA's Jet Propulsion Laboratory, Pasadena, California. "The duration is important, because it's the second time through the seasons that lets us see repeated patterns."

Each Martian year -- the time it takes the Red Planet to orbit the sun once -- lasts 687 Earth days. Curiosity landed on Aug. 5, 2012, (Pacific Time; Aug. 6, Universal Time). It begins its third Martian year on May 11, 2016, during the mission's 1,337th Martian day, or "sol," since landing. Each Martian sol lasts about 39.6 minutes longer than an Earth day, and a Martian year lasts 668.6 sols.

The similar tilts of Earth and Mars give both planets a yearly rhythm of seasons. But some differences are great, such as in comparisons between day and night temperatures. Even during the time of the Martian year when temperatures at Gale Crater rise above freezing during the day, they plummet overnight below minus 130 F (minus 90 C), due to the thin atmosphere. Also, the more-elliptical orbit of Mars, compared to Earth, exaggerates the southern-hemisphere seasons, making them dominant even at Gale Crater's near-equatorial location.

"Mars is much drier than our planet, and in particular Gale Crater, near the equator, is a very dry place on Mars," said Germán Martínez, a Curiosity science-team collaborator from Spain at the University of Michigan, Ann Arbor. "The water vapor content is a thousand to 10 thousand times less than on Earth."

Relative humidity is a function of both temperature and water-vapor content. During winter nights, Curiosity has measured relative humidity of up to 70 percent, high enough to prompt researchers to check for frost forming on the ground. Other Mars landers have detected frost, but Curiosity has not.

Curiosity's air-pressure measurements confirm a strong seasonal trend previously seen by other missions. "There are large changes due to the capture and release of carbon dioxide by the seasonal polar caps," Martínez explained. Most of the Martian atmosphere is carbon dioxide. During each pole's winter, millions of tons of this gas freeze solid, only to be released again in spring, prompting very un-Earthlike seasonal variations of about 25 percent in atmospheric pressure.

Other seasonal patterns measured by Curiosity and repeated in the rover's second Martian year are that the local atmosphere is clear in winter, dustier in spring and summer, and windy in autumn. Visibility in Gale Crater is as low as 20 miles (30 kilometers) in summer, and as high as 80 miles (130 kilometers) in winter.

For tracking changes in the concentration of methane in the air above Gale Crater, researchers use the tunable laser spectrometer in Curiosity's Sample Analysis at Mars (SAM) suite of instruments. These measurements are made less often than REMS measurements, though frequently enough to tease out seasonal patterns. For most of the two Martian years, the rover has measured methane concentrations between 0.3 and 0.8 parts per billion. For several weeks during the first autumn, the level spiked, reaching 7 parts per billion. The mission checked carefully for a repeat of that spike during the second autumn, but concentrations stayed at lower background levels.

"Doing a second year told us right away that the spike was not a seasonal effect," said JPL's Chris Webster of the SAM team. "It's apparently an episodic event that we may or may not ever see again."

However, the mission is continuing to monitor a possible seasonal pattern in the background methane concentration. The background level is far less than the spike level, but it appears to be even lower in autumn than in other seasons. If this pattern is confirmed, it may be related to the pressure pattern measured by REMS or to seasonal change in ultraviolet radiation, which is measured by REMS in concert with the rover's Mast Camera.

"This shows not only the importance of long-term monitoring, but also the importance of combining more than one type of measurement from a single platform," Webster said.

While continuing to study the modern local environment, Curiosity is investigating geological layers of lower Mount Sharp, inside Gale Crater, to increase understanding of ancient changes in environmental conditions.


In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #181 on: June 15, 2016, 03:01:18 PM »
Quote
NASA's Curiosity Mars rover has analyzed its 12th drilled sample of Mars. This sample came from mudstone bedrock, which the rover resumed climbing in late May after six months studying other features.

Since the previous time Curiosity drilled into this "Murray formation" layer of lower Mount Sharp, the mission has examined active sand dunes along the rover's route, then crossed a remnant plateau of fractured sandstone that once more extensively covered the Murray formation.
While on the "Naukluft Plateau," the rover examined its 10th and 11th drill targets to repeat an experiment comparing material within and away from pale zones around fractures. From there, Curiosity also took the latest in a series of self-portraits.

"Now that we've skirted our way around the dunes and crossed the plateau, we've turned south to climb the mountain head-on," said Curiosity Project Scientist Ashwin Vasavada, of NASA's Jet Propulsion Laboratory, Pasadena, California. "Since landing, we've been aiming for this gap in the terrain and this left turn. It's a great moment for the mission."

Curiosity landed near Mount Sharp in 2012. It reached the base of the mountain in 2014 after successfully finding evidence on the surrounding plains that ancient Martian lakes offered conditions that would have been favorable for microbes if Mars has ever hosted life. Rock layers forming the base of Mount Sharp accumulated as sediment within ancient lakes billions of years ago.

The Murray formation is about one-eighth of a mile (200 meters) thick. So far, Curiosity has examined about one-fifth of its vertical extent.

"The story that the Murray formation is revealing about the habitability of ancient Mars is one of the mission's surprises," Vasavada said. "It wasn't obvious from pre-mission data that it formed in long-lived lakes and that its diverse composition would tell us about the chemistry of those lakes and later groundwater."

The latest sample-collection target, "Oudam," was drilled on June 4. On the Naukluft Plateau, Curiosity drilled "Lubango," within a halo of brighter sandstone near a fracture, and "Okoruso," away from a fracture-related halo, for comparison. The mission conducted a similar experiment last year, with two sample targets drilled at another exposure of the fractured sandstone.

This sandstone unit, called the Stimson formation, is interpreted to have resulted from wind that draped a band of sand dunes over lower Mount Sharp. That would have been after the main stack of the mountain's lower layers had formed and partially eroded. Water later moved through fractures in the sandstone. Investigation of the fracture-related halos aims to determine how fluid moved through the fractures and altered surrounding rock.

"We were about to drive off the Naukluft Plateau and leave the Stimson formation forever as we go up Mount Sharp," said Curiosity science-team member Albert Yen of JPL. "A few of us were concerned. The fracture-associated haloes were becoming more prevalent, and we had only one data point. With just one data point, you never know whether it is representative."

As with the similar previous experiment, comparison of Lubango and Okoruso found higher silica and sulfate levels in the sample nearer to the fracture. Multiple episodes of groundwater flow with different chemistry at different times may have both delivered silica and sulfate from elsewhere and leached other ingredients away.

"The big-picture story is that this may be one of the youngest fluid events we're likely to study with Curiosity," Yen said. "You had to lay down the Murray, then cement it, then lay down the Stimson and cement that, then fracture the Stimson, then have fluids moving through the fractures."

On Mount Sharp, Curiosity is investigating how and when the habitable ancient conditions known from the mission's earlier findings evolved into conditions drier and less favorable for life. For more information about Curiosity, visit: http://mars.nasa.gov/msl



Quote
Curiosity's First 14 Rock or Soil Sampling Sites on Mars

This graphic maps the first 14 sites where NASA's Curiosity Mars rover collected rock or soil samples for analysis using the rover's onboard laboratory. It also presents images of the drilled holes where 12 rock-powder samples were acquired. At the other two sites Curiosity scooped soil samples.

This graphic maps locations of the first 14 sites where NASA's Curiosity Mars rover collected rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 12 rock-powder samples were acquired. At the other two sites -- Rocknest and Gobabeb -- Curiosity scooped soil samples.

The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites.

The latest sample site included is "Oudam," where Curiosity drilled into mudstone of the "Murray formation" on June 4, during the 1,361th Martian day, or sol, of the mission.

Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons).

Dates when the first 11 drilled-rock samples were collected are: "John Klein" on Feb. 8, 2013 (Sol 182); "Cumberland" on May 19, 2013 (Sol 279); "Windjana" on May 5, 2014 (Sol 621); "Confidence Hills" on Sept. 24, 2014 (Sol 759); "Mojave" on Jan. 29, 2015 (Sol 882); "Telegraph Peak" on Feb. 24, 2015 (Sol 908); "Buckskin" on July 30, 2015 (Sol 1060); "Big Sky" on Sept. 29, 2015 (Sol 1119); "Greenhorn" on Oct. 18, 2015 (Sol 1137); "Lubango" on April 23, 2016 (Sol 1320); and "Okoruso" on May 5, 2016 (Sol 1332).

MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.nasa.gov/msl/.
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

spuwho

  • Hero Member
  • *****
  • Posts: 5104
Re: Mars Rover Curiosity
« Reply #182 on: June 15, 2016, 10:17:02 PM »
Interesting reports on Martian weather.  The thinner the atmosphere, the larger range of temps.  I wasn't aware that the Martian equator exceeded freezing (0 C) in their summer.  Imagine if the air was just a few parts thicker.

As far as long term living for us Earth bound folk, Martian living (no matter how glorious Elon Musk makes it) is fraught with serious challenges, most of which is the fractional gravity.

Long duration stays on the ISS has found that the absence of gravity causes the eyeballs to deform over time. Essentially anyone living on Mars without any kind of gravitational supplement (a spinning chamber, or artificial grav) will go blind after a couple of years. The distance between the eye lens and your retina will no longer align properly.

Its awesome that we would like to have a presence there, but until some better technology can be transplanted from the world of Star Trek, it will be a short stay for most folks.

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #183 on: June 28, 2016, 09:19:28 AM »
http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1916


Quote
This scene shows NASA's Curiosity Mars rover at a location called "Windjana," where the rover found rocks containing manganese-oxide minerals, which require abundant water and strongly oxidizing conditions to form.

Quote
NASA's Curiosity at Site of Clues About Ancient Oxygen

Chemicals found in Martian rocks by NASA's Curiosity Mars rover suggest the Red Planet once had more oxygen in its atmosphere than it does now.
Researchers found high levels of manganese oxides by using a laser-firing instrument on the rover. This hint of more oxygen in Mars' early atmosphere adds to other Curiosity findings -- such as evidence about ancient lakes -- revealing how Earth-like our neighboring planet once was.

This research also adds important context to other clues about atmospheric oxygen in Mars' past. The manganese oxides were found in mineral veins within a geological setting the Curiosity mission has placed in a timeline of ancient environmental conditions. From that context, the higher oxygen level can be linked to a time when groundwater was present in the rover's Gale Crater study area.

"The only ways on Earth that we know how to make these manganese materials involve atmospheric oxygen or microbes," said Nina Lanza, a planetary scientist at Los Alamos National Laboratory in New Mexico. "Now we're seeing manganese oxides on Mars, and we're wondering how the heck these could have formed?"

Microbes seem far-fetched at this point, but the other alternative -- that the Martian atmosphere contained more oxygen in the past than it does now -- seems possible, Lanza said. "These high manganese materials can't form without lots of liquid water and strongly oxidizing conditions. Here on Earth, we had lots of water but no widespread deposits of manganese oxides until after the oxygen levels in our atmosphere rose."

Lanza is the lead author of a new report about the Martian manganese oxides in the American Geophysical Union's Geophysical Research Letters. She uses Curiosity's Chemistry and Camera (ChemCam) instrument, which fires laser pulses from atop the rover's mast and observes the spectrum of resulting flashes of plasma to assess targets' chemical makeup.

In Earth's geological record, the appearance of high concentrations of manganese oxide minerals is an important marker of a major shift in our atmosphere's composition, from relatively low oxygen abundances to the oxygen-rich atmosphere we see today. The presence of the same types of materials on Mars suggests that oxygen levels rose there, too, before declining to their present values. If that's the case, how was that oxygen-rich environment formed?

"One potential way that oxygen could have gotten into the Martian atmosphere is from the breakdown of water when Mars was losing its magnetic field," said Lanza. "It's thought that at this time in Mars' history, water was much more abundant." Yet without a protective magnetic field to shield the surface, ionizing radiation started splitting water molecules into hydrogen and oxygen. Because of Mars' relatively low gravity, the planet wasn't able to hold onto the very light hydrogen atoms, but the heavier oxygen atoms remained behind. Much of this oxygen went into rocks, leading to the rusty red dust that covers the surface today. While Mars' famous red iron oxides require only a mildly oxidizing environment to form, manganese oxides require a strongly oxidizing environment, more so than previously known for Mars.

Lanza added, "It's hard to confirm whether this scenario for Martian atmospheric oxygen actually occurred. But it's important to note that this idea represents a departure in our understanding for how planetary atmospheres might become oxygenated." Abundant atmospheric oxygen has been treated as a so-called biosignature, or a sign of extant life, but this process does not require life.

Curiosity has been investigating sites in Gale Crater since 2012. The high-manganese materials it found are in mineral-filled cracks in sandstones in the "Kimberley" region of the crater. But that's not the only place on Mars where high manganese abundances have been found. NASA's Opportunity rover, exploring Mars since 2004, also recently discovered high manganese deposits thousands of miles from Curiosity. This supports the idea that the conditions needed to form these materials were present well beyond Gale Crater.

Los Alamos National Laboratory leads the U.S. and French team that jointly developed and operates ChemCam. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, built the rover and manages the Curiosity mission for NASA's Science Mission Directorate, Washington.
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #184 on: July 07, 2016, 06:54:05 AM »
STATUS REPORT
07.06.2016
Curiosity Rover Enters Precautionary Safe Mode

MARS SCIENCE LABORATORY MISSION STATUS REPORT
The team operating NASA's Curiosity Mars rover is taking steps to return the rover to full activity following a precautionary stand-down over the Fourth of July weekend.

Curiosity is now communicating with ground controllers and is stable. The rover put itself into safe mode on July 2, ceasing most activities other than keeping itself healthy and following a prescribed sequence for resuming communications.

Engineers are working to determine the cause of safe-mode entry. Preliminary information indicates an unexpected mismatch between camera software and data-processing software in the main computer. The near-term steps toward resuming full activities begin with requesting more diagnostic information from Curiosity.

Curiosity has entered safe mode three times previously, all during 2013.

The rover landed in Mars' Gale Crater in August 2012. During its first year on Mars, the mission achieved its goal by determining that, more than 3 billion years ago, the region offered fresh-water lakes and rivers with environmental conditions well-suited to supporting microbial life, if life has ever existed on Mars. In continuing investigations, the mission is learning more about the ancient wet environments and how and when they evolved to drier and less habitable conditions.

NASA last week approved an additional two-year extension, beginning Oct. 1, 2016, for the Mars Science Laboratory Project, which developed and operates Curiosity.
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #185 on: July 13, 2016, 12:30:07 PM »
07.06.2016
Curiosity Mars Rover Resumes Full Operations

MARS SCIENCE LABORATORY MISSION STATUS REPORT
UPDATED JULY 11 AT 1:15 p.m. PT

NASA's Curiosity Mars rover is resuming full operations today, following work by engineers to investigate why the rover put itself into a safe standby mode on July 2. The rover team brought Curiosity out of safe mode on July 9.

The most likely cause of entry into safe mode has been determined to be a software mismatch in one mode of how image data are transferred on board. Science activity planning for the rover is avoiding use of that mode, which involves writing images from some cameras' memories into files on the rover's main computer. Alternate means are available for handling and transmitting all image data.
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #186 on: July 22, 2016, 07:08:18 AM »
http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1925

Quote
07.21.2016
NASA Mars Rover Can Choose Laser Targets on Its Own

NASA's Curiosity Mars rover autonomously selects some targets for the laser and telescopic camera of its ChemCam instrument. For example, on-board software analyzed the Navcam image at left, chose the target indicated with a yellow dot, and pointed ChemCam for laser shots and the image at right.



NASA's Curiosity Mars rover autonomously selects some of the targets for the laser and telescopic camera of the rover's Chemistry and Camera (ChemCam) instrument. For example, on-board software analyzed the image on the left, chose the target highlighted with the yellow dot, and pointed ChemCam to acquire laser analysis and the image on the right.

Most ChemCam targets are still selected by scientists discussing rocks or soil seen in images the rover has sent to Earth, but the autonomous targeting provides an added capability. It can offer a head start on acquiring composition information at a location just reached by a drive. The software for target selection and instrument pointing is called AEGIS, for Autonomous Exploration for Gathering Increased Science.

The image on the left was taken by the left eye of Curiosity's stereo Navigation Camera (Navcam) a few minutes after the rover completed a drive of about 43 feet (13 meters) on July 14, 2016, during the 1,400th Martian day, or sol, of the rover's work on Mars. Using AEGIS for target selection and pointing based on the Navcam imagery, Curiosity's ChemCam zapped a grid of nine points on a rock chosen for meeting criteria set by the science team. In this run, parameters were set to find bright-toned outcrop rock rather than darker rocks, which in this area tend to be loose on the surface. Within less than 30 minutes after the Navcam image was taken, ChemCam had used its laser on all nine points and had taken before-and-after images of the target area with its remote micro-imager (RMI) camera. The image at right combines those two RMI exposures. The nine laser targets are marked in red at the center.

On the Navcam image at left, the yellow dot identifies the selected target area, which is about 2.2 inches (5.6 centimeters) in diameter. An unannotated version of this Sol 1400 Navcam image is available as Fig. A.

ChemCam records spectra of glowing plasma generated when the laser hits a target point. These spectra provide information about the chemical elements present in the target. The light-toned patch of bedrock identified by AEGIS on Sol 1400 appears, geochemically, to belong to the "Stimson" sandstone unit of lower Mount Sharp. In mid-2016, Curiosity typically uses AEGIS for selecting a ChemCam target more than once per week.

AEGIS software was developed at NASA's Jet Propulsion Laboratory, Pasadena, California. ChemCam is one of 10 instruments in Curiosity's science payload. The U.S. Department of Energy's Los Alamos National Laboratory, in Los Alamos, New Mexico, developed ChemCam in partnership with scientists and engineers funded by the French national space agency (CNES), the University of Toulouse and the French national research agency (CNRS). More information about ChemCam is available at http://www.msl-chemcam.com/ .

Image Credit: NASA/JPL-Caltech/LANL/CNES/IRAP/LPGNantes/CNRS/IAS
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #187 on: August 19, 2016, 02:36:03 PM »
Curiosity has driven: 8.50 miles (13.68 kilometers)as of Sol 1431







In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #188 on: September 08, 2016, 08:35:49 AM »
Just a couple of "tourist" pix...  8)



In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #189 on: October 04, 2016, 07:29:40 AM »
Quote
This map shows the route driven by NASA's Curiosity Mars rover from the location where it landed in August 2012 to its location in September 2016 at "Murray Buttes," and the path planned for reaching destinations at "Hematite Unit" and "Clay Unit" on lower Mount Sharp.

Blue triangles mark waypoints investigated by Curiosity during the rover's two-year prime mission and first two-year extended mission.  The Hematite Unit and Clay Unit are key destinations for the second two-year extension, through September 2018.

The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. Bagnold Dunes form a band of dark, wind-blown material at the foot of Mount Sharp.

The scale bar at lower right represents one kilometer (0.62 mile).  For broader-context images of the area, see http://photojournal.jpl.nasa.gov/catalog/PIA17355, http://photojournal.jpl.nasa.gov/catalog/PIA16064  and http://photojournal.jpl.nasa.gov/catalog/PIA16058.

NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Science Laboratory Project and Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington. For more information about the Mars Science Laboratory mission and the mission's Curiosity rover, visit http://www.nasa.gov/msl and http://mars.nasa.gov/msl.

Image Credit: NASA/JPL-Caltech/Univ. of Arizona

In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #190 on: October 04, 2016, 07:38:23 AM »
http://www.scientificamerican.com/article/was-there-ever-life-on-mars/

Quote
Was There Ever Life on Mars?
Harsh radiation, thin air, and frigid temperatures on the Red Planet likely forced any extant microbes into subterranean refuges long ago
By Jesse Emspak, SPACE.com on October 4, 2016

If life existed on Mars, it would have had to deal with harsh radiation—and any traces of that life might only be found deep under the soil today.
During the Mars Society annual meeting on Sept. 22-25, held in Washington, D.C., Jennifer Eigenbrode, a biogeochemist and geologist at NASA Goddard Space Flight Center in Maryland, outlined the constraints on whether living things could have existed on the Red Planet and what obstacles they would have faced, as well as whether it's possible that any life could still be there.
It's important for scientists to make sure they recognize life when they see it, not just to learn more about the universe, but also because such life-forms could potentially be hazardous to humans, she said.

"The [Mars Science Laboratory on the Curiosity rover] was never prepared for looking for signs of life," she said. "The Curiosity rover's instruments are designed so that scientists could answer the questions of whether it's possible for life to have existed in the past and whether any traces would be detectable. That's the first thing one has to know before one looks for signatures of living things."

The challenges for living things on Mars started billions of years ago, when the planet, for whatever reason, lost its magnetic field, Eigenbrode said. That left Mars with nothing to block the solar wind, which slowly bled off the planet's atmosphere.
"This also exposed the planet surface to all of the radiation" from the sun, Eigenbrode said. "The atmosphere was being blown away. This complicates the evolution of a biosphere."

As the atmosphere thinned, more ionizing radiation could reach the ground. That type of radiation tends to break up organic molecules, which are molecules containing carbon, Eigenbrode said. She added that in lab experiments, exposure to radiation at levels similar to those on Mars' surface destroys up to 90 percent of large carbon molecules.

If life appeared on Mars in the past, when the planet might have been wetter, with a thicker atmosphere, then organisms could have gotten a foothold, she said. That is, life could have then adapted to a higher-radiation environment over time and retreated deeper underground for protection, Eigenbrode said.

Signatures of such life might still exist now, she said; the instruments on the Curiosity rover were designed to find out if it was possible for those signs to survive. Curiosity data showed that some large carbon-based molecules remain in the soil of Mars, and they aren't just the results of contamination from the rover itself.

Eigenbrode added that future missions will have to get below the planet's surface, though, to check for traces of previous life. "If we are looking for something old from an ancient environment, we want to go deep … about 2 to 3 meters [about 6.5 to 10 feet]."
Besides protection from radiation, life also needs liquid water. Eigenbrode pointed to some encouraging signs that the vital molecule is present on Mars, such as formations in Gale crater. Researchers have identified mudstones and sedimentary bands, which form only if there is water present for a long time, on the order of millennia.

In another good sign, Eigenbrode said, Curiosity found evidence that water can bubble to the Martian surface and turn to frost. "Perhaps that water is bringing organisms to the surface," she said.
As for surface life existing now, that is much less likely, due to the intense radiation, she said.
Even though Curiosity found carbon molecules, that doesn't necessarily mean that life existed, even in the past, Eigenbrode said. Such molecules can show up from three sources, she said. One is interplanetary and interstellar dust, which are rich with such molecules. The second is chemical reactions underground. The last one is actual living things.
 
The search for Martian life could provide a number of benefits, Eigenbrode said. Beyond the scientific value of finding alien organisms, researchers want to identify living creatures on Mars because they might be dangerous to people. 
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #191 on: October 25, 2016, 07:05:52 AM »
It has been windy on Mars lately...  Check out the 1 day movement of tailings from the latest drill hole...




In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

wanderson91

  • Jr. Member
  • **
  • Posts: 78
Re: Mars Rover Curiosity
« Reply #192 on: October 25, 2016, 08:07:36 AM »
I love all of these updates!

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #193 on: November 02, 2016, 12:49:15 PM »
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."

BridgeTroll

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 13408
  • The average person thinks he isnt
    • London Bridge Pub
Re: Mars Rover Curiosity
« Reply #194 on: November 02, 2016, 02:03:31 PM »
http://www.seeker.com/nasa-mars-curiosity-discovery-mars-meteorite-exploration-robotics-2076189974.html

Quote
Nov 2, 2016 01:00 PM ET
Space Invader on Mars: Curiosity Finds a Meteorite
 
But the likely nickel-iron meteorite isn't the first specimen the rover has discovered in the Martian dirt.



If you're familiar with the pockmarked landscape of Mars, you'll know that the Red Planet gets hit by meteorites a lot. So it stands to reason that you'll likely find the occasional ex-space rock just sitting out there on the surface, particularly if your primary task is to constantly look down. And it just so happens we have a robotic geologist that has been getting intimate with Mars rocks since 2012 and it has just found a new rock beyond Mars.

The meteorite was discovered in imagery taken by Curiosity's Mastcam on sol (day) 1503 of its mission (Oct. 28) and followup studies by the rover's ChemCam on Oct. 30 revealed the object's strange, melted structure (pictured below)(Notice the nine laser scars). Curiosity is currently climbing the slopes of Mount Sharp (Aeolis Mons) in the center of Gale Crater after leaving the geologically fascinating region of "Murray Buttes."

University of Arizona planetary scientists believe that it is a metallic nickel-iron rich meteorite, which are commonly found on Earth. This Martian example has been nicknamed "Egg Rock" by the Curiosity mission team.

The interesting thing about meteorites on the Martian surface is that they are not subject to some of the aggressive weathering terrestrial meteorites are. Mars' atmosphere is very dry, limiting the amount of moisture that can degrade the pristine material. These factors help to preserve the meteorite material for indefinite periods, particularly if they are metal-rich.

Also, as the Mars atmosphere is so thin, compared with Earth's hefty atmospheric gases, Mars meteors will more likely hit the ground as meteorites and not completely burn up. Therefore future human meteorite hunters would want to consider field trips to Mars to collect these treasures as they hold many clues to the composition of ancient asteroids that formed when the solar system was young.



Due to their comparative abundance on the surface, future Mars colonists may also seek out meteorites such as these so precious metals can be extracted and used for industrial processes. Although the increased risk of more frequent meteorite strikes will be a problem, the reward could be a potential goldmine of rare metals that can be found on or near the surface. Why mine asteroids when you can extract asteroid chunks from the Martian dirt?

Though obviously a rare find for our robotic explorer, this certainly isn't the first meteorite that's been found on the Martian surface. For example, in 2014 the 6-wheeled rover spotted a huge 2 meter-wide meteorite sticking out of the Martian regolith. Mars Exploration Rovers Opportunity and Spirit have also been pretty successful meteorite hunters.

As both Curiosity and Opportunity continue to explore the Martian surface, it will be interesting to see how many more space rocks they find, potentially providing an estimate of how many meteorites may be accessible to our future Martian explorers to find.
In a boat at sea one of the men began to bore a hole in the bottom of the boat. On being remonstrating with, he answered, "I am only boring under my own seat." "Yes," said his companions, "but when the sea rushes in we shall all be drowned with you."